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Abstract – Anderson and dynamical localization have been experimentally observed with ultra-
cold atomic matter. Feshbach resonances are used to efficiently control the strength of interactions
between atoms. This allows to study the delocalization effect of interactions for localized wave
packets. The delocalization processes are subdiffusive and slow, thereby limiting the quantitative
experimental and numerical analysis. We propose an elegant solution of the problem by proper
ramping the interaction strength in time. We demonstrate that subdiffusion is speeded up to
normal diffusion for interacting disordered and kicked atomic systems. The door is open to test
these theoretical results experimentally, and to attack similar computational quests in higher space
dimensions

Copyright c© EPLA, 2013

Introduction. – The quantum wave nature of ultra-
cold atoms in optical potentials [1], as demonstrated
impressively through their macroscopic condensation [2,3],
is the key ingredient for the recent observation of Anderson
localization with quantum atomic matter [4,5]. Quasi–one-
dimensional elongated traps are modulated randomly with
speckle potentials [6,7], or simply quasiperiodically with
interfering laser beams [8], in order to observe the halt
of spreading of an initially localized wave packet of
104–105 Rb and K atoms, and an exponentially localized
atomic density distribution profile. The length scales are
controlled by the localization length ξ which is a function
of the potential parameters, and possibly also the ener-
gies of packet atoms. This phenomenon of wave localiza-
tion is inherently relying on the phase coherence of matter
waves. It is closely related to the dynamical localization
of the quantum kicked rotor in momentum space, which
was successfully probed already in 1995 using ultra-cold
Na atoms [9]. Recent experiments with quasiperiodically
kicked rotors with Cs atoms extend to two- and three-
dimensional disorder potentials [10]. Interestingly systems
of one- and two-dimensional optical waveguides have been
also recently used to probe Anderson localization [11,12].
For some atomic species (K, Cs, Na, Li) Feshbach reso-

nances can be used to efficiently control the strength
of interactions between atoms [13–16]. This opens the
possibility to study the fate of Anderson localization

for interacting localized wave packets. Indeed the first
experiment of this kind [17] showed that interaction beats
localization, but in a very slow way —the second moment
m2 of an atomic wave packet increases subdiffusively
in time: m2 ∼ t

α with α< 1. This process may stop in
the long run once the atomic density n of the wave
packet reaches the inverse of the localization length ξ
(which touches the quantum world of many-body local-
ization [18]). On shorter times (when typically more than
10 atoms occupy one local single-particle state) the mean-
field approximation is a reasonable tool for the study of
the subdiffusive process.

The problem. – The mean-field approximation
replaces the many-body linear Schrödinger equation in
a hugely dimensional Hilbert space with a nonlinear
Schrödinger equation (NLS), e.g., the Gross-Pitaevsky
equation. The effective interaction strength β is propor-
tional to the scattering length as. What matters in terms
of quality here, is the fact that for almost any disorder
(or quasiperiodic) potential realization the corresponding
NLS will be nonintegrable. This seemingly unimportant
mathematical property has a very profound impact —the
dynamics of a wave packet becomes in general chaotic
in time, characterized by positive Lyapunov coefficients
and exponential divergence of nearby trajectories. As
a consequence the coherence of phases of waves which
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constitute a given initial wave packet is lost, and with it
also the whole effect of wave localization. First observed in
1993 by Shepelyansky for an NLS version of the quantum
kicked rotor [19], it was recently studied with great
detail for random and quasiperiodic potentials [20–25].
The main outcome for quasi–one-dimensional models
with two-body time-independent atomic interactions
is a universal asymptotic wave packet spreading with
exponent α= 1/3, which does not depend on the interac-
tion and disorder strength [26]. With inverse time units
equal to single-particle kinetic energies the crossover
from intermediate to universal asymptotic dynamics
takes place at dimensionless time τ ∼ 106. Although the
spreading is induced by interaction, the crossover time
between intermediate and universal asymptotic regime
of spreading is usually much more affected by the wave
packet initial form than by the interaction strength. One
exception is the case of very week interaction, where a
long time is needed even for a start of the delocalization
process [27]. In the Florence setup [17] largest times
reached are τ ∼ 104, leaving the experiments in the
intermediate case-to-case-dependent dynamics. Although
the onset of subdiffusion is clearly observed, no reliable
experimental data are currently at hand to measure the
exponent α, as follows from the data analaysis and the
large statistical errors in [17]. While some experimental
optimization and increase of the kinetic energy may add
one order of magnitude in time, another one-two orders
are needed and are probably currently out of range of
accessibility. Notably similar problems of insufficient
available time scales arise with computational studies
when turning to higher-dimensional analogs [24,28,29].
While two-dimensional models appear to be at the edge
of reasonable analysis, three-dimensional are clearly not.
We emphasize here that the issue is not only to reach an
asymptotic state, but also how much time is needed to
probe this state. As a rule of the thumb any power law
needs two orders of magnitude in each of the variables
to be diagnosed. A subdiffusive process with α= 1/3 will
need six orders of magnitude in time, a normal diffusion
process instead only two. As follows from the above we
can diagnose the problem of lacking time scales for a safe
observation and study of subdiffusive interacting atomic
cloud dynamics in disordered media.

The solution. – Instead of trying to substantially
increase available time scales, we propose here to speed up
the subdiffusive process itself. This is done by a temporal
ramping of the two-body interaction strength, which can
be varied, e.g., for K atoms by three orders of magnitude
close to the Feshbach resonance [13]. Why should that
help? The momentary diffusion rate D of a spreading
packet in one spatial dimension is proportional to the
fourth power of the product of interaction strength β and
particle density n: D∼ (βn)4 [30]. In the course of cloud
spreading the density n decreases, and therefore also D.
This is the reason for the predicted subdiffusion process,

which is substantially slower than normal diffusion. We
propose here to compensate the decrease of the density n
with an increase in the interaction strength β. Depending
on the concrete time dependence β(τ) we expect different
faster subdiffusion processes, and possibly even normal
diffusion. The condition for that outcome to be realized is,
that the internal chaos time scales (basically the inverse
Lyapunov coefficients) will be still short enough so that
the atomic cloud can first get chaotic, and then spread.
With that achieved, the cloud spreading will be faster,
and we can expect that the available experimental time
will suffice for the precise observation and analysis of the
process.
Let us get into numbers for one spatial dimension.

The second moment is m2 ∼ 1/n
2 and the momentary

diffusion constantD∼ (βn)4. For a constant β the solution
of m2 =Dτ yields m2 ∼ 1/n

2 ∼ τ1/3, and therefore n∼
τ−1/6. Thus we choose now a time dependence β ∼ τν .
Then the resulting spreading is characterized by

m2 ∼ τ
(1+4ν)/3, d= 1 . (1)

For ν = 1/2 we already obtain normal diffusion m2 ∼ τ .
Similar for two spatial dimensions, where m2 ∼ 1/n,

for a constant β the cloud spreading is even slower with
m2 ∼ τ

1/5. With a time dependent ramping β ∼ τν the
resulting speedup is

m2 ∼ τ
(1+4ν)/5, d= 2 . (2)

For ν = 1 we again obtain normal diffusion.
We note that if numerics confirm the above predictions

then also the above conditions for the chaoticity time
scales are met with good probability. Returning to the
original quantum many-body problem we note that only
states within the volume of one localization length do
interact. These states show level repulsion and Wigner
statistics [31], therefore adiabaticity is a well-defined
concept here as well.
Once ramping is too fast, we expect to see several differ-

ent scenaria. Either fragmenting atomic clouds appear
since some parts of the cloud get self-trapped [32,33] and
some other parts do not. If self-trapping is avoided, we
may also see ramping-induced diffusion: while the inter-
nal cloud dynamics does not suffice to decohere phases,
initial fluctuations in the density distribution can lead to
considerably different temporal energy renormalizations in
different cloud spots, and therefore to an effective dephas-
ing similar to a random noise process in real time and
space.

Results in one dimension. – Here we study the
spreading of atomic clouds in one-dimensional disorder
potentials and in a quantum kicked rotor with interacting
atoms. The first model is described with the discrete NLS
(DNLS)

i
∂ψl
∂τ
= ǫlψl+β (τ) |ψl|

2
ψl−ψl+1−ψl+1, (3)

10011-p2



Make slow fast —How to speed up interacting disordered matter

in which the on-site energy ǫl is chosen uniformly from
a [−W/2,W/2] random distribution. The nonlinear quan-
tum kicked rotor (NQKR) is studied within the diago-
nal interaction approximation introduced by Shepelyansky
in [19]:

ψl(τ +1) =
∑

m

(−i)l−mJl−m(k)ψm(τ)e
−i τ̄

2
m2+iβ(τ)|ψm|

2

,

(4)
where ψl(τ) are the Fourier coefficients of the correspond-
ing time-dependent many-body wave function. Jl−m(k) is
a Bessel function of the first kind, whose argument k is
the kick strength, and τ̄ is a parameter which relates the
period of applied kicks T (set to T = 1) to the natural
frequency of rotor, defined as ω= �/2M (M is the mass
of atoms). In both models β is the interaction strength
ramped in time τ —the dimensionless time for the DNLS
and the number of kicks for the NQKR model:

β(τ) =

⎧

⎨

⎩

β0, τ ≤ τ0,

β0

(

τ

τ0

)ν

, τ > τ0.
(5)

In both models we consider a wave packet which is initially
concentrated on a single site for purely technical reasons,
without any loss of generality (extended initial clouds are
perfectly usable as well [27]). After some first time scale
τ0 the packet spreads approximately over one localization
length ξ. The total norm of the packet is set to one
without any loss of generality and is proportional to the
total number of atoms in a cloud (similarly, we could
also choose any larger norm and rescale β accordingly).
To characterize the spreading of the cloud we compute
the density nl = |ψl(τ)|

2
, the participation number P =

1/
∑

l n
2
l (the number of strongly excited sites), and the

second moment m2 =
∑

l(l− l̄)
2nl (the squared distance

between the wave packet tails), where l̄=
∑

l lnl is the first
moment. In the NQKR the average energy of the atomic
cloud is proportional to the corresponding second moment,
E = 12m2. Another remarkable difference between both
systems is that for large values of β self-trapping can occur
for atomic clouds in disordered spatial systems which may
lead to soliton formation [34]. For the kicked rotor case
this is impossible since the interaction strength β action
in (4) is cyclic reflecting the circumstance of periodic kick
action in momentum space [35].
Equation (3) was time evolved using a SABA-class

symplectic integration scheme and equation (4) as an
iteration map. The parameters were fixed to β0 = 1 and
W = 4 for the DNLS and β0 = 0.4, τ̄ = 1 and k= 3 for
the one-dimensional NQKR. Different realizations for the
DNLS were produced by choosing different unique random
sequences in the interval [−W/2,W/2], while for the
NQKR they were realized by exciting different initial
states.
The spreading of wave packets in the DNLS model,

without and with ramping of the nonlinearity are shown in
fig. 1. Clearly packets spread faster when the nonlinearity

Fig. 1: (Color online) Evolution of the averaged norm density
〈nl(τ)〉 in the case without (ν = 0) and with ramping (ν = 0.3)
in log scale for the DNLS model.

Fig. 2: (Color online) Left column: the second moments
(upper) and their power-law exponents α (lower) for the DNLS
model for ν = 0 (red), ν = 0.1 (green), ν = 0.2 (blue), ν = 0.3
(magenta), ν = 0.4 (cyan), and ν = 0.5 (black). Right column:
the second moments (upper) and their power-law exponents α
(lower) for the NQKR model for ν = 0 (red), ν = 0.17 (green),
ν = 0.25 (blue), ν = 0.33 (magenta), ν = 0.5 (cyan), and ν = 1.5
(black). Dashed colored lines correspond to expected values for
exponents in both cases.

is ramped in time. To quantify the spreading exponent,
we averaged the logs (base 10) of P and m2 over 1000
different realizations and smoothened additionally with
locally weighted regression [36]. The (time-dependent)
spreading exponents are obtained through central finite

difference method [37], α= d〈log10(m2)〉d(log10(τ))
. The results for

the DNLS and NQKR model are shown in fig. 2. The
exponents of subdiffusive spreading reach the theoretically
predicted values. Note that the first assumption of the
asymptotic exponent occurs after similar waiting times for
all ν. Monitoring of the participation number P for the
DNLS indicates that self-trapping starts to occur already
for ν = 0.4. Results for the NQKR model, in which the
self-trapping is avoided, confirm the reaching of a normal
diffusion process for ν = 0.5. Remarkably, the absence
of self-trapping for the NQKR results in superdiffusion
on intermediate times for ν > 0.5. Finally, the exponent
relaxes back to the normal diffusion value indicating

10011-p3
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Fig. 3: (Color online) The norm density nl1,l2(τ) in the case
without (ν = 0, upper row) and with (ν = 1.0, lower row)
ramping after τ = 102, τ = 103, and τ = 105 kicks in log scale
for the two-dimensional NQKR model.

the realization of ramping-induced diffusion. This case is
illustrated for ν = 1.5 in fig. 2.

Results in two dimensions. – To speed up sub-
diffusive processes in higher dimensions we considered the
two-dimensional NQKR model based on the map intro-
duced in [38], with an additional phase term which takes
into account interactions in the diagonal approximation:

ψl1,l2(τ +1) =
∑

s1,s2

(−i)s1+s2Js1(k/2)Js2(k/2)

ψl1−s1−s2,l2+s1−s2(τ)

e−i
τ̄
2
((l1−s1−s2)

2+(l2+s1−s2)
2)

eiβ(τ)|ψl1−s1−s2,l2+s1−s2 (τ)|
2

. (6)

The notation is the same as in the one-dimensional
case, except that now we have two indices, for each
possible direction. Note that according to the relation for
Bessel functions J−n(x) = (−1)

nJn(x), the wave packet
ψl1,l2 , defined by expression (6), exhibits symmetry with
respect to the l1 and the l2 direction. The density is
defined as nl1,l2 = |ψl1,l2(τ)|

2
, the participation number

as P = 1/
∑

l1,l2
n2l1,l2 , and the second moment is m2 =

∑

l1,l2
[(l1− l̄1)

2+(l2− l̄2)
2]nl1,l2 , where l̄1 =

∑

l1,l2
l1nl1,l2

and l̄2 =
∑

l1,l2
l2nl1,l2 . Equation (6) was time evolved as

an iteration map for the fixed parameters β0 = 0.4, τ̄ = 1
and k= 2.
In fig. 3 we compare the wave packet evolution for ν = 1

(normal diffusion) and ν = 0 at three different moments of
time. We clearly observe the symmetry of wave packet and
a much more violent spreading in the presence of ramping.
The spreading exponents are computed similar to the
one-dimensional case. We find very good agreement with
the theoretical prediction (fig. 4). Again the asymptotic
spreading state is reached faster for stronger ramping.

Conclusion. – We have investigated the speeding-up
of the subdiffusive spreading in interacting disordered
and kicked atomic systems by a proper ramping of the
interaction strength in time. We confirm that ramping
the interaction strength leads to faster subdiffusion. For

Fig. 4: (Color online) The second moments (upper) and their
power-law exponents α (lower) for the two-dimensional NQKR
model for ν = 0 (red), ν = 0.5 (green), ν = 0.75 (blue), and ν = 1
(magenta). Dashed colored lines correspond to expected values
for exponents.

fast enough ramping we even reach normal diffusion of
atomic clouds. Self-trapping effects in disordered systems
are limiting further speed up of the wave packet spreading.
Most importantly the concept works equally well in one-
dimensional and two-dimensional systems.
Our results on how to speed up slow subdiffusive

processes in interacting disordered matter will be useful for
quantitative experimental and computational studies of
the impact of interactions on disorder induced matter wave
localization. This is particularly true for experimental
realizations with ultra-cold atoms, where the scattering
length and thus the interactions strength can be tuned
via Feshbach resonances by magnetic field variations.
On the other hand, our results are also very useful for
computational studies of spreading regimes in higher-
dimensional systems, where even modern computers reach
their limits before reaching the subdiffusive asymptotics.
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